Faster Pairing Computations on Curves with High-Degree Twists
نویسندگان
چکیده
Research on efficient pairing implementation has focussed on reducing the loop length and on using high-degree twists. Existence of twists of degree larger than 2 is a very restrictive criterion but luckily constructions for pairing-friendly elliptic curves with such twists exist. In fact, Freeman, Scott and Teske showed in their overview paper that often the best known methods of constructing pairing-friendly elliptic curves over fields of large prime characteristic produce curves that admit twists of degree 3, 4 or 6. A few papers have presented explicit formulas for the doubling and the addition step in Miller’s algorithm, but the optimizations were all done for the Tate pairing with degree-2 twists, so the main usage of the highdegree twists remained incompatible with more efficient formulas. In this paper we present efficient formulas for curves with twists of degree 2, 3, 4 or 6. These formulas are significantly faster than their predecessors. We show how these faster formulas can be applied to Tate and ate pairing variants, thereby speeding up all practical suggestions for efficient pairing implementations over fields of large characteristic.
منابع مشابه
Faster Pairing Computation on Jacobi Quartic Curves with High-Degree Twists
In this paper, we propose an elaborate geometric approach to explain the group law on Jacobi quartic curves which are seen as the intersection of two quadratic surfaces in space. Using the geometry interpretation we construct the Miller function. Then we present explicit formulae for the addition and doubling steps in Miller’s algorithm to compute Tate pairing on Jacobi quartic curves. Both the...
متن کاملPairing Computation on Edwards Curves with High-Degree Twists
In this paper, we propose an elaborate geometry approach to explain the group law on twisted Edwards curves which are seen as the intersection of quadric surfaces in place. Using the geometric interpretation of the group law we obtain the Miller function for Tate pairing computation on twisted Edwards curves. Then we present the explicit formulae for pairing computation on twisted Edwards curve...
متن کاملSpeeding Up Pairing Computations on Genus 2 Hyperelliptic Curves with Efficiently Computable Automorphisms
Pairings on the Jacobians of (hyper-)elliptic curves have received considerable attention not only as a tool to attack curve based cryptosystems but also as a building block for constructing cryptographic schemes with new and novel properties. Motivated by the work of Scott, we investigate how to use efficiently computable automorphisms to speed up pairing computations on two families of non-su...
متن کاملA study of pairing computation for curves with embedding
This paper presents the first study of pairing computation on curves with embedding degree 15. We compute the Ate and the twisted Ate pairing for a family of curves with parameter ρ 1.5 and embedding degree 15. We use a twist of degree 3 to perform most of the operations in Fp or Fp5 . Furthermore, we present a new arithmetic for extension fields of degree 5. Our computations show that these cu...
متن کاملSpeeding Up Ate Pairing Computation in Affine Coordinates
At Pairing 2010, Lauter et al’s analysis showed that Ate pairing computation in affine coordinates may be much faster than projective coordinates at high security levels. In this paper, we further investigate techniques to speed up Ate pairing computation in affine coordinates. On the one hand, we improve Ate pairing computation over elliptic curves admitting an even twist by describing an 4-ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009